Optimization / Numerical Linear Algebra (ONLA) do not forget to write your sid no. on your exam.

- [1] (10 Pts.) Let $A \in \mathbb{C}^{n \times n}$ have singular value decomposition $A = U\Sigma V^*$.
- (a) Prove that A has full rank if and only if A^*A is nonsingular.
- (b) Find (with proof) an eigenvalue decomposition for the matrix $B \in \mathbb{C}^{2n \times 2n}$ which is defined by

$$B := \begin{bmatrix} 0 & A \\ A^* & 0 \end{bmatrix},$$

where 0 denotes the $n \times n$ matrix of all zero entries.

Qualifying Exam, Spring 2021 OPTIMIZATION / NUMERICAL LINEAR ALGEBRA (ONLA)

- [2] (10 Pts.) Answer (with proof or counter-example) which of the following sets are convex:
- (a) (3 pts.) A hyper-rectangle: $\{x \in \mathbb{R}^n \mid \alpha_i \leq x_i \leq \beta_i, i = 1, \dots, n\}.$
- (b) (3 pts.) The set of points closer to a given point $z \in \mathbb{R}^n$ than to a given nonempty, closed set $S \subset \mathbb{R}^n$:

$$\{x \in \mathbb{R}^n \mid ||x - z||_2 \le \operatorname{dist}(x, S)\},\$$

where dist(x, S) returns the distance between x and S

$$dist(x, S) = \inf\{ \|x - y\|_2 \mid y \in S \}.$$

(c) (4 pts.) The set of points closer to a given nonempty, closed set $S \subset \mathbb{R}^n$ than to a given point $z \in \mathbb{R}^n$:

$$\{x \in \mathbb{R}^n \mid ||x - z||_2 \ge \operatorname{dist}(x, S)\}.$$

Optimization / Numerical Linear Algebra (ONLA)

[3] (10 Pts.) Let $f : \mathbb{R}^n \to \mathbb{R}$ be a proper, closed, convex function on \mathbb{R}^n . Let $\alpha > 0$. Define the proximal operator with respect to αf as

$$\operatorname{Prox}_{\alpha f}(y) = \operatorname{argmin}_{x \in \mathbb{R}^n} \left\{ \alpha f(x) + \frac{1}{2} \|x - y\|_2^2 \right\}.$$

Given $y \in \mathbb{R}$, the proximal operator returns the unique solution to the minimization problem.

Consider a nonzero vector $a = (a_1, \ldots, a_m) \in \mathbb{R}^m$ satisfying $a \neq 0$ and function $g : \mathbb{R}^{mn} \to \mathbb{R}$ defined as

$$g(x^1,\ldots,x^m) = f(a_1x^1 + \cdots + a_mx^m).$$

Show that, with

$$v = \frac{1}{\|a\|_2^2} \left(a_1 y^1 + \dots + a_m y^m - \operatorname{Prox}_{\|a\|_2^2 f} (a_1 y^1 + \dots + a_m y^m) \right),$$

we have

$$\operatorname{Prox}_{g}(y^{1},\ldots,y^{m}) = \begin{bmatrix} y^{1} - a_{1}v \\ \vdots \\ y^{m} - a_{m}v \end{bmatrix}.$$

(Background: Computing a proximal operator is an optimization problem. When $\operatorname{Prox}_f(y)$ has a closed-form solution (for any input y), it is suitable used as a subroutine. This question shows when $\operatorname{Prox}_f(y)$ has a closed-form solution, Prox_g also has a closed-form solution.

Hint: compare optimality conditions.)

OPTIMIZATION / NUMERICAL LINEAR ALGEBRA (ONLA)

- [4] (10 Pts.)
- (a) (3 pts.) Show that if $A \in \mathbb{R}^{n \times n}$ is symmetric positive definite and $Q \in \mathbb{R}^{n \times k}$ has full column rank, then $T = Q^{\top} A Q$ is also symmetric positive definite.
- (b) (7 pts.) Let A and B be real symmetric $n \times n$ matrices. Suppose that AB = BA and that A has distinct eigenvalues. Show that there is an orthogonal matrix Q such that QAQ^{\top} and QBQ^{\top} are diagonal matrices.

OPTIMIZATION / NUMERICAL LINEAR ALGEBRA (ONLA)

- [5] (10 Pts.)
 - (a) (5 pts.) Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$, $m \ge n$. The normal equations for minimizing $||Ax b||_2^2$ with respect to x are $A^{\top}Ax = A^{\top}b$. Derive the normal equations for minimizing $||Ax b||_C^2$, where C is a symmetric positive definite matrix and $||x||_C^2 = (x^{\top}Cx)$.
- (b) (5 pts.) Let $A = R + uv^{\top}$, where R is an upper triangular matrix, and u and v are column vectors. Describe an efficient algorithm to compute the QR decomposition of A. Concretely, provide a pseudocode description of the algorithm and explain why it takes a particular number (asymptotic notation) of operations.

Hint: Using Givens rotations, for $n \times n$ matrices the algorithm should take $O(n^2)$ operations.

Qualifying Exam, Spring 2021 OPTIMIZATION / NUMERICAL LINEAR ALGEBRA (ONLA)

[6] (10 Pts.) Let D be a $m \times m$ diagonal matrix with non-zero diagonal elements d_1, \ldots, d_m , and w a vector with non-zero entries w_1, \ldots, w_m . Let $A = D + ww^T$ be the diagonal matrix plus a rank-one update. Prove that the eigenvalues λ of A must be roots of the function $f(\lambda) = 1 + \sum_{j=1}^{m} \frac{w_j^2}{d_j - \lambda}$. (Hint: prove A has eigenvector v only if $x = w^T v$ satisfies $x + w^T (D - \lambda I)^{-1} wx = 0$.)

OPTIMIZATION / NUMERICAL LINEAR ALGEBRA (ONLA)

[7] (10 Pts.) Assume $f : \mathbb{R}^n \to \mathbb{R}$ is proper, closed, and convex, , and continuously differentiable. Also assume f is μ -strongly convex and its gradient ∇f is L-Lipschitz. Let $\alpha \in (0, 2/L)$.

Find (with proof) the smallest β in terms of α, μ, L such that

 $||x' - y'||_2 \le \beta ||x - y||_2 \quad \forall x, y \in \text{dom}f, \ x' = x - \alpha \nabla f(x), \ y' = y - \alpha \nabla f(y).$

(You may make the additional assumption that f is twice continuously differentiable. If you do so and answer this question correctly, you will get 7 pts out of 10. To get all the 10 pts, you must not make this assumption. There are multiple equivalent definitions of μ -strong convexity and L-Lipschitz differentiability. You can use any of those equivalent definitions as long as you clearly state which ones you use.)

Optimization / Numerical Linear Algebra (ONLA)

[8] (10 Pts.) Let $A \in \mathbb{R}^{n \times n}$ and $b \in \mathbb{R}^n$. Show that the Krylov subspace

 $\mathcal{K}_k(A,b) = \operatorname{span}\{b, Ab, A^2b, \dots, A^{k-1}b\}$

has dimension k if and only if the Arnoldi algorithm or the Lanczos algorithm can compute q_k without quitting first.

Hint: The Arnoldi and Lanczos algorithms are shown below.

Arnoldi algorithm for (partial) reduction to Hessenberg form:

```
q_{1} = b/||b||_{2}
for j = 1 to k
z = Aq_{j}
for i = 1 to j
h_{i,j} = q_{i}^{\top} z
z = z - h_{i,j}q_{i}
end for
h_{j+1,j} = ||z||_{2}
if h_{j+1,j} = 0, quit
q_{j+1} = z/h_{j+1,j}
end for
```

Lanczos algorithm for (partial) reduction to symmetric tridiagonal form:

```
q_{1} = b/||b||_{2}, \ \beta_{0} = 0, \ q_{0} = 0
for j = 1 to k
z = Aq_{j}
\alpha_{j} = q_{j}^{\top} z
z = z - \alpha_{j}q_{j} - \beta_{j-1}q_{j-1}
\beta_{j} = ||z||_{2}
if \beta_{j} = 0, quit
q_{j+1} = z/\beta_{j}
end for
```