[1] (10 Pts.) Let $A \in \mathbb{C}^{n \times n}$ have singular value decomposition $A=U \Sigma V^{*}$.
(a) Prove that A has full rank if and only if $A^{*} A$ is nonsingular.
(b) Find (with proof) an eigenvalue decomposition for the matrix $B \in \mathbb{C}^{2 n \times 2 n}$ which is defined by

$$
B:=\left[\begin{array}{cc}
0 & A \\
A^{*} & 0
\end{array}\right]
$$

where 0 denotes the $n \times n$ matrix of all zero entries.
[2] (10 Pts.) Answer (with proof or counter-example) which of the following sets are convex:
(a) (3 pts.) A hyper-rectangle: $\left\{x \in \mathbb{R}^{n} \mid \alpha_{i} \leq x_{i} \leq \beta_{i}, i=1, \ldots, n\right\}$.
(b) (3 pts.) The set of points closer to a given point $z \in \mathbb{R}^{n}$ than to a given nonempty, closed set $S \subset \mathbb{R}^{n}:$

$$
\left\{x \in \mathbb{R}^{n} \mid\|x-z\|_{2} \leq \operatorname{dist}(x, S)\right\}
$$

where $\operatorname{dist}(x, S)$ returns the distance between x and S

$$
\operatorname{dist}(x, S)=\inf \left\{\|x-y\|_{2} \mid y \in S\right\}
$$

(c) (4 pts.) The set of points closer to a given nonempty, closed set $S \subset \mathbb{R}^{n}$ than to a given point $z \in \mathbb{R}^{n}$:

$$
\left\{x \in \mathbb{R}^{n} \mid\|x-z\|_{2} \geq \operatorname{dist}(x, S)\right\}
$$

Optimization / Numerical Linear Algebra (ONLA)

[3] (10 Pts.) Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a proper, closed, convex function on \mathbb{R}^{n}. Let $\alpha>0$. Define the proximal operator with respect to αf as

$$
\operatorname{Prox}_{\alpha f}(y)=\underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}}\left\{\alpha f(x)+\frac{1}{2}\|x-y\|_{2}^{2}\right\} .
$$

Given $y \in \mathbb{R}$, the proximal operator returns the unique solution to the minimization problem.
Consider a nonzero vector $a=\left(a_{1}, \ldots, a_{m}\right) \in \mathbb{R}^{m}$ satisfying $a \neq 0$ and function $g: \mathbb{R}^{m n} \rightarrow \mathbb{R}$ defined as

$$
g\left(x^{1}, \ldots, x^{m}\right)=f\left(a_{1} x^{1}+\cdots+a_{m} x^{m}\right)
$$

Show that, with

$$
v=\frac{1}{\|a\|_{2}^{2}}\left(a_{1} y^{1}+\cdots+a_{m} y^{m}-\operatorname{Prox}_{\|a\|_{2}^{2} f}\left(a_{1} y^{1}+\cdots+a_{m} y^{m}\right)\right)
$$

we have

$$
\operatorname{Prox}_{g}\left(y^{1}, \ldots, y^{m}\right)=\left[\begin{array}{c}
y^{1}-a_{1} v \\
\vdots \\
y^{m}-a_{m} v
\end{array}\right]
$$

(Background: Computing a proximal operator is an optimization problem. When $\operatorname{Prox}_{f}(y)$ has a closed-form solution (for any input y), it is suitable used as a subroutine. This question shows when $\operatorname{Prox}_{f}(y)$ has a closed-form solution, Prox_{g} also has a closed-form solution.

Hint: compare optimality conditions.)

Optimization / Numerical Linear Algebra (ONLA)

[4] (10 Pts.)
(a) (3 pts.) Show that if $A \in \mathbb{R}^{n \times n}$ is symmetric positive definite and $Q \in \mathbb{R}^{n \times k}$ has full column rank, then $T=Q^{\top} A Q$ is also symmetric positive definite.
(b) (7 pts.) Let A and B be real symmetric $n \times n$ matrices. Suppose that $A B=B A$ and that A has distinct eigenvalues. Show that there is an orthogonal matrix Q such that $Q A Q^{\top}$ and $Q B Q^{\top}$ are diagonal matrices.

Optimization / Numerical Linear Algebra (ONLA)

[5] (10 Pts.)
(a) (5 pts.) Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^{m}, m \geq n$. The normal equations for minimizing $\|A x-b\|_{2}^{2}$ with respect to x are $A^{\top} A x=A^{\top} b$. Derive the normal equations for minimizing $\|A x-b\|_{C}^{2}$, where C is a symmetric positive definite matrix and $\|x\|_{C}^{2}=\left(x^{\top} C x\right)$.
(b) (5 pts.) Let $A=R+u v^{\top}$, where R is an upper triangular matrix, and u and v are column vectors. Describe an efficient algorithm to compute the QR decomposition of A. Concretely, provide a pseudocode description of the algorithm and explain why it takes a particular number (asymptotic notation) of operations.
Hint: Using Givens rotations, for $n \times n$ matrices the algorithm should take $O\left(n^{2}\right)$ operations.

Optimization / Numerical Linear Algebra (ONLA)

[6] (10 Pts.) Let D be a $m \times m$ diagonal matrix with non-zero diagonal elements d_{1}, \ldots, d_{m}, and w a vector with non-zero entries w_{1}, \ldots, w_{m}. Let $A=D+w w^{T}$ be the diagonal matrix plus a rank-one update. Prove that the eigenvalues λ of A must be roots of the function $f(\lambda)=1+\sum_{j=1}^{m} \frac{w_{j}^{2}}{d_{j}-\lambda}$. (Hint: prove A has eigenvector v only if $x=w^{T} v$ satisfies $x+w^{T}(D-\lambda I)^{-1} w x=0$.)
[7] (10 Pts.) Assume $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is proper, closed, and convex, , and continuously differentiable. Also assume f is μ-strongly convex and its gradient ∇f is L-Lipschitz. Let $\alpha \in(0,2 / L)$.

Find (with proof) the smallest β in terms of α, μ, L such that

$$
\left\|x^{\prime}-y^{\prime}\right\|_{2} \leq \beta\|x-y\|_{2} \quad \forall x, y \in \operatorname{dom} f, \quad x^{\prime}=x-\alpha \nabla f(x), \quad y^{\prime}=y-\alpha \nabla f(y)
$$

(You may make the additional assumption that f is twice continuously differentiable. If you do so and answer this question correctly, you will get 7 pts out of 10 . To get all the 10 pts, you must not make this assumption. There are multiple equivalent definitions of μ-strong convexity and L Lipschitz differentiability. You can use any of those equivalent definitions as long as you clearly state which ones you use.)
[8] (10 Pts.) Let $A \in \mathbb{R}^{n \times n}$ and $b \in \mathbb{R}^{n}$. Show that the Krylov subspace

$$
\mathcal{K}_{k}(A, b)=\operatorname{span}\left\{b, A b, A^{2} b, \ldots, A^{k-1} b\right\}
$$

has dimension k if and only if the Arnoldi algorithm or the Lanczos algorithm can compute q_{k} without quitting first.
Hint: The Arnoldi and Lanczos algorithms are shown below.
Arnoldi algorithm for (partial) reduction to Hessenberg form:

$$
\begin{aligned}
& q_{1}=b /\|b\|_{2} \\
& \text { for } j=1 \text { to } k \\
& z=A q_{j} \\
& \text { for } i=1 \text { to } j \\
& \quad h_{i, j}=q_{i}^{\top} z \\
& z=z-h_{i, j} q_{i} \\
& \text { end for } \\
& h_{j+1, j}=\|z\|_{2} \\
& \text { if } h_{j+1, j}=0, \text { quit } \\
& q_{j+1}=z / h_{j+1, j} \\
& \text { end for }
\end{aligned}
$$

Lanczos algorithm for (partial) reduction to symmetric tridiagonal form:
$q_{1}=b /\|b\|_{2}, \beta_{0}=0, q_{0}=0$
for $j=1$ to k
$z=A q_{j}$
$\alpha_{j}=q_{j}^{\top} z$
$z=z-\alpha_{j} q_{j}-\beta_{j-1} q_{j-1}$
$\beta_{j}=\|z\|_{2}$
if $\beta_{j}=0$, quit
$q_{j+1}=z / \beta_{j}$
end for

